鳳新高中 111 學年度 第一學期 第一次段考 高二數學科(A 卷)

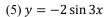
、是非題(每題2分,共10分)

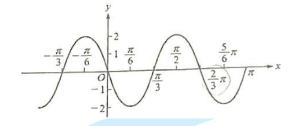
() 1.
$$\frac{\sqrt{2}}{2} < \cos 7 < 1$$

() 2.
$$\cos 67.5^{\circ} = \frac{\sqrt{2+\sqrt{2}}}{2}$$

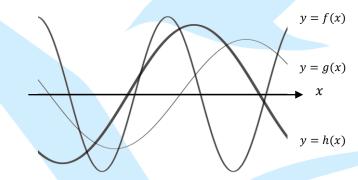
-) 3. 函數 $y = \sin(3x + \frac{3\pi}{5})$ 的圖形可由函數 $y = \sin 3x$ 的圖形往左平移 $\frac{\pi}{5}$ 單位得到
-) 4. 函數 $y = 2 \tan(\frac{\pi}{3}x \frac{4\pi}{7}) 29$ 的週期為 6
-) 5. 函數 $y = \sin |x|$ 的週期為 π

二、多選題(每題5分,共15分,5-3-1-0)


)1. 如右圖,為下列何者之函數圖形?


(1)
$$y = 2\sin(x - \frac{\pi}{3})$$
 (2) $y = 2\cos 3(x + \frac{\pi}{6})$
(3) $y = -2\cos 3(x - \frac{\pi}{6})$ (4) $y = 2\sin 3x$

(2)
$$y = 2\cos 3(x + \frac{\pi}{6})$$


(3)
$$y = -2\cos 3(x - \frac{\pi}{6})$$

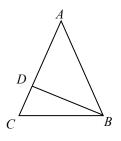
$$(4) y = 2 \sin 3x$$

) 2. 將函數 $y = 3\sin x - \cos x$, $y = \sin(2x) + 3\cos(2x)$, $y = 2\sin x + 2\cos x$ 的圖形繪於同一坐標平面上, 其與x軸的相關位置如下圖,則下列哪些選項是正確的?

- (1) $y = 3 \sin x \cos x$ 的最小值為 $-\sqrt{10}$
- $(2) y = \sin(2x) + 3\cos(2x)$ 的週期為 2π
- $(3) y = 2 \sin x + 2 \cos x$ 的振幅為 2
- (4) 圖中的圖形 y = h(x) 所代表的函數為 $y = 3 \sin x \cos x$
- (5) 圖中的圖形 y = f(x) 所代表的函數為 $y = \sin(2x) + 3\cos(2x)$
-) 3. 若函數 $y = f(x) = 2\cos(\frac{\pi}{3} x) 2\cos x 3$,則下列哪些選項是正確的?
 - (1) y = f(x) 不為週期函數
 - (2) y = f(x) 的圖形可由 $y = \sin x$ 的圖形經過適當的平移與伸縮得到
 - (3) y = f(x) 的圖形對稱於直線 $x = \frac{\pi}{c}$
 - (4) 若 $0 \le x \le \pi$,則當 x = 0 時,f(x) 有最小值 -4
 - (5) 若 $0 \le x \le \pi$,則當 $x = \pi$ 時,f(x) 有最大值 -2

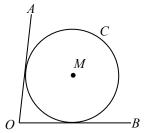
三、填充題(每格5分,共75分)

1.
$$\vec{x} \frac{\cos \frac{5\pi}{3}}{1 + \sin \frac{2\pi}{3}} + 3 \tan \frac{13\pi}{6} = \underline{ }$$

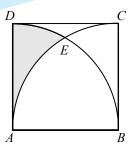

2. 已知
$$\pi < \theta < \frac{3\pi}{2}$$
 且 $\sin \theta = -\frac{3}{5}$,求 (1) $\tan \frac{\theta}{2} =$ ______; (2) $\sin 2\theta + \cos 3\theta =$ ______。

3. 設
$$a = \sin 40^{\circ}$$
, $b = \cos 20^{\circ}$,求 $a\sqrt{1-b^2} - b\sqrt{1-a^2}$ 的值為 ______

4. 試求直線
$$L_1$$
: $y = \sqrt{3}x - 25$ 與直線 L_2 : $y = -x + 23$ 的夾角為 _______。


5. 在
$$\triangle ABC$$
中,已知 $\cos A = -\frac{3}{5}$, $\cos B = \frac{12}{13}$,求 $\sin C$ 的值為 ______。

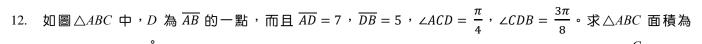
6. 如右圖,在 $\triangle ABC$ 中, $\overline{AB} = \overline{AC}$,D在 \overline{AB} 上且 $\overline{CD} \perp \overline{AB}$ 。已知 $\overline{BC} = 13$, $\overline{BD} = 5$, $\cos \angle ACD = \underline{\hspace{1cm}}$

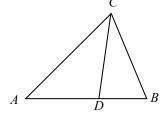


7. 在 $\triangle ABC$ 中, $\angle C$ 為直角, $\overline{BC}=5\overline{AC}$,若 D 為 \overline{BC} 上一點且 $\overline{BD}=\frac{2}{5}\overline{BC}$,試求 $\tan \angle BAD=\underline{\hspace{1cm}}$ 。

8. 如圖,已知 $\angle AOB=\theta$,且 $0<\theta<\frac{\pi}{2}$,又圓 C 的圓心為 M、半徑為 2,且與 $\angle AOB$ 的兩邊相切,若 $\sin\theta=\frac{24}{25}$,求 \overline{MO} 的長度為 ______。

9. 如右圖,已知正方形 ABCD 的邊長為 1,分別以 A 和 B 為圓心,1 為半徑畫弧,兩弧交於 E 點,求鋪色區域面積 為




10. 海水受到月球引力的影響會發生漲落的潮汐現象,下表是某港口在一天內海水漲落的記錄表:

時間 t (小時)	0	3	6	9	12	15	18	21	24
水深 <i>y</i> (公尺)	10	13	10	7	10	13	10	7	10

經過長期的觀測得知,水深 y 與時間 t 可以用函數 $y=a\sin bt+c$ 來描述,已知 a , b , c 皆為正數,根據上述資料,求數對 (a , b , c) = ______。

11. 若 $-2\pi \le x \le \frac{5\pi}{2}$,則方程式 $\tan(x - \frac{\pi}{2}) + x - 1 = 0$ 有 ______ 個實數解。

13. 化簡 $\frac{\sin 60^{\circ}}{\sin 100^{\circ}} - \frac{\sin 100^{\circ}}{\sin 20^{\circ}} = ______$

14. 已知函數 $y = a \sin x + \cos x$ 的圖形對稱於直線 $x = \frac{5\pi}{3}$,求實數 a 的值為 ______。

鳳新高中 111 學年度 第一學期 第一次段考 高二數學科(A 卷)

一、單選題

1.	2.	3.	4.	5.
0	×	0	×	×

二、多選題

1.	2.	3.		
(2)(3)(5)	(1)(5)	(2)(4)		

三、埴充題

項 允題					
1.	1. 2.(1)		3.	4.	
2	-3	$\frac{164}{125}$	$-\frac{1}{2}$	75°,105°	
5.	6.	7.	8.	9.	
33 65	$\frac{120}{169}$	$\frac{1}{8}$	$\frac{10}{3}$	$\frac{3\sqrt{3}-\pi}{12}$	
10	11.	12.	13.	14.	
$(3,\frac{\pi}{6},10)$	5	21	-2	$-\sqrt{3}$	