
高雄女中 111 學年度 第二學期 第一次段考 高二數學科 A 卷

單選題(每題3分,共9分)

-) 1. 坐標空間中 O 為原點,點 P 在第一卦限且 $\overline{OP}=13$,點 A 和點 B 分別為點 P 對於 x 軸和 y 軸的對稱點。已 知 \overline{OP} 和 x 軸正向的夾角為 θ ,其中 $\sin \theta = \frac{12}{13}$,且 $\overline{AB} = 2\sqrt{41}$ 。試選出點 P 的 y 坐標。
 - (1) $2\sqrt{5}$ (2) 4

- (3) 5 (4) 8 (5) $\sqrt{139}$
-) 2. 已知向量外積 $(a,b,c) \times (p,q,r) = (1,-1,1)$,則行列式 $\begin{bmatrix} a & b & c \\ 3 & 2 & 1 \\ n & a & r \end{bmatrix}$ 的值為下列哪一選項?
 - (1) -2 (2) 2
- (3) -11 (4) 11
-)3. 右圖四面體 OABC 中,已知 $\overline{BC} = 10$, $\overline{AC} = 8$, $\sin \angle ACB = \frac{3}{4}$, $\overline{OA} = 4$,且 $\triangle ABC \cong \triangle OBC$ 。設半平面 ABC 和半平面 OBC 的夾角為 θ ,則 $\cos \theta$ 的值為下 列哪一個選項?

$$(1)\frac{\sqrt{17}}{9}$$
 $(2)\frac{4\sqrt{2}}{9}$ $(3)\frac{2}{3}$ $(4)\frac{7}{9}$ $(5)\frac{8}{9}$

二、多選題(每題8分,共24分,8-6-4-2-0)

)1. 下列哪些選項中的值與 $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ 的值相等的有哪些?試選出正確的選項。

$$(1) \ a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} + a_2 \begin{vmatrix} b_3 & b_1 \\ c_3 & c_1 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} \qquad (2) \begin{vmatrix} b_1 & a_1 & c_1 \\ b_2 & a_2 & c_2 \\ b_3 & a_3 & c_3 \end{vmatrix} \qquad (3) \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

(3)
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

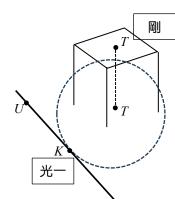
$$(4) \begin{vmatrix} 2a_1 & \frac{1}{2}b_1 + a_1 & c_1 + b_1 \\ 2a_2 & \frac{1}{2}b_2 + a_2 & c_2 + b_2 \\ 2a_3 & \frac{1}{2}b_3 + a_3 & c_3 + b_3 \end{vmatrix}$$

$$(5)\frac{1}{2}\begin{vmatrix} 2a_1 & 2a_2 & 2a_3 \\ 2b_1 & 2b_2 & 2b_3 \\ 2c_1 & 2c_2 & 2c_3 \end{vmatrix}$$

-) 2. 坐標空間中,有一四面體 ABCD,已知 $\angle ABC = \angle ABD = 90^{\circ}$,試選出正確選項。
 - (1) 若 $\overrightarrow{AP} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$,且 $\alpha + \beta = 1$,則 P 在 \overrightarrow{BC} 上
 - (2) 平面 ABC 和平面 ABD 必垂直
- (3) 平面 ABC 和平面 BCD 必垂直
- (4) 若 $\angle CAD$ 為銳角,則 $\angle CBD$ 也必為銳角 (5) 若 \overline{BC} 垂直 \overline{CD} ,則 \overline{AC} 垂直 \overline{CD}
-) 3. 有一四面體 ABCD,除了 $\overline{CD} = 8$ 以外,其餘稜長皆為 5,今在 \overline{CD} 上作一中點 M,試選出正確選項。
 - (1) A 到平面 BCD 的距離為 $\frac{5\sqrt{11}}{6}$
- (2) 直線 CD 和平面 ABM 垂直
- $(3) \mid \overrightarrow{MA} \times \overrightarrow{MB} \mid = \mid \overrightarrow{MC} \mid$
- $(4) \ \overrightarrow{CA} \cdot \overrightarrow{CB} = \overrightarrow{MA} \cdot \overrightarrow{MB}$
- (5) 若 $C \times D$ 坐標分別為 $(8,0,0) \times (0,0,0) + \triangle ABC$ 重心的 x 坐標為 $\frac{16}{3}$

三、填充題(每格5分,共60分)

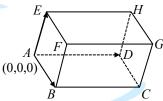
1. 如右圖,ABCD-EFGH 為空間中一長方體。已知 $\overline{AE}=2$, $\overline{AF}=\sqrt{13}$,且 $\overline{AH}=\sqrt{29}$,則三角形 AFH 的面積為


E E C H

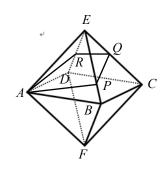
2. 空間中有相異三點 $A(0,5,1) \times B(2,4,4) \times C(3,2,1)$,已知 C在直線 AB 上的投影點為 H,且 $\overline{CH} = \alpha \overline{CA} + \beta \overline{CB}$,則數對 $(\alpha,\beta) =$ _______。

3. 已知 $A(3,1,1) \setminus B(6,2,-4) \setminus C(0,4,0)$,且 z 軸上一點 D(0,0,z) 也在平面 ABC 上, z =______。

4. 空間中有一平行四邊形 ABCD,已知對角線上的向量 $|\overrightarrow{AC}| = 10$, $= |\overrightarrow{BD}| = 8$,且 $\overrightarrow{AC} \cdot \overrightarrow{BD} = -48$,求 $|\overrightarrow{AB} \times \overrightarrow{AC}| = \underline{}$ 。

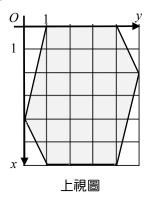

5. 如右圖,當 KinKi Kids 演唱薔薇と太陽的時候剛會站在較高的舞台演奏吉他,光一則是站在較低的舞台跳舞,若剛所站的舞台地板是透明的,且剛的正上方有燈光,將剛所在的 T 點垂直投影在光一所在的舞台上的 C 點,光影剛好以 C 點為圓心形成一圓 C,而光一正好在光影所形成的圓 C 上,伴舞的舞者 U 也和光一在低的舞台跳舞,兩者連成的直線恰為圓 C 的切線。若 $\overline{TC}=3$ 公尺, $\overline{KC}=4$ 公尺,

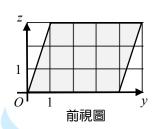
已知空間中相異三點 $O(0,0,0) \setminus A(2,4,4) \setminus B(2,-2,1)$ 滿足 $\angle AOB = 90^{\circ}$,今有一點 C(x,y,z) 在平面 OAB 上使得 $\overrightarrow{OC} = -2\overrightarrow{OA} + t\overrightarrow{OB}$ 且 $\tan \angle AOC = -\frac{3}{4}$,且滿足 $\overrightarrow{OA} \times \overrightarrow{OB}$ 和 $\overrightarrow{OA} \times \overrightarrow{OC}$ 方向相同,則點 C 的 $x \times y \times z$ 坐標之和 *x* + *y* + *z* = ______


7. 已知實數 $x \cdot y \cdot z$ 滿足 $(x-1)^2 + (y-2)^2 + (z-3)^2 = 25$,且當 $x = \alpha \cdot y = \beta \cdot z = \gamma$ 時, -3x - 2y + 6z + 7 會有最大值 M,求 $3\alpha + 2\beta + \gamma + M = _____$ 。

如右圖所示,有一平行六面體 ABCD-EFGH,已知向量 $\overrightarrow{AB}=(4,1,0)\setminus\overrightarrow{AD}=(0,2,6)\setminus\overrightarrow{AE}=(-6,-1,6)$,且 A 的坐標為 (0,0,0),已知該平行六面體內有一點 P 滿足向量 $\overline{AP} = x \overline{AB} + \frac{1}{4} \overline{AD} + \frac{1}{6} \overline{AE}$,若 P 點到平面 ADHE 的距離為 $\frac{2}{7}$,則 x =______。

右圖中的 $A \setminus B \setminus C \setminus D \setminus E \setminus F$ 是空間中的一個正八面體的六個頂點,其中 $\overline{CA} = (2,0,0) \setminus \overline{DB} = (0,2,0)$, $\overrightarrow{FE} = (0,0,2)$,有一個平面將此正八面體截出一個四邊形 APQR。已知 $P \times Q \times R$ 分別在 $\overline{BE} \times \overline{CE} \times \overline{DE}$ 上,且 $\overline{BP}: \overline{PE} = 1:2 \cdot \overline{DE}: \overline{RE} = 1:1 \circ$


(1) $\vec{x} \ \overrightarrow{AP} \times \overrightarrow{AR} = \underline{\qquad}$ (2) $\vec{x} \ \overrightarrow{CQ} : \overrightarrow{QE} = \underline{\qquad}$




四、混合題(共16分)

坐標空間第一卦限中,有一平行六面體平置在xy平面上,且有4個邊和y軸平行,如右圖所示。

今小強為了紀錄該平行六面體的大小及擺放的方向,故利用三視圖將該平行六面體投影在yz平面(前視圖)、xz平面(右視圖)、xy平面(上視圖)來記錄,並加上間隔為 1 單位的格線如下圖。

上方

右方

- 1. 試在 xy 平面上的正確位置畫出該平行六面體和 xy 平面接觸的底面平行四邊形的形狀,並用斜線標示和 xy 平面接觸的區域。(作圖題,4 分)
- 2. xy 平面上的四個頂點中,距離原點 O 最近的頂點設為 A,另外和 A 相鄰的三個頂點分別設為 $P \times Q \times R$,其中 $P \times Q$ 兩點也是 xy 平面上的點。已知 $\overline{AP} \times \overline{AQ} = t \ (0,0,1)$,且 t > 0,試用坐標表示法分別表示 $\overline{AP} \times \overline{AQ} \times \overline{AR}$ 。 (非選則題,6分)
- 3. 承上題,除了 A 以外的七個頂點中,距離 A 最遠的頂點設為 F,試求 F 和直線 AQ 的最短距離。(非選擇題,6分)

高雄女中 111 學年度 第二學期 第一次段考 高二數學科 A 卷

一、單選題

1.	2.	3.
(2)	(1)	(4)

二、多選題

1.	2.	3.
(1)(3)(4)	(3)(5)	(1)(2)(5)

三、填充題

70000				
1.	2.	3.	4.	5.
19 2	$\left(\frac{5}{14},\frac{9}{14}\right)$	6	32	$\frac{20}{3}$
6.	7.	8.	9.(1)	9.(2)
-17	58	送分	$\left(\frac{1}{2},\frac{1}{6},\frac{7}{6}\right)$	3:2

四、計算題

U1 5 T NC2		
1.	2.	3.
略	$\overline{AP} = (4, -1, 0) \setminus \overline{AQ} = (0, 3, 0) \setminus \overline{AR} = (2, 1, 3)$	3√5