
中山高中 111 學年度 第二學期 第二次段考 高二數學科 (A 卷)

單選題(每題3分,共30分)

-) 1. 兩平行平面 E_1 : x + 2y 2z = 1 和 E_2 : 2x + 4y 4z = 5 的距離為
- (A) $\frac{1}{2}$ (B) $\frac{2}{3}$ (C) $\frac{4}{3}$ (D) 1
-) 2. 右圖是一個長方體,若 $\overline{AB}=6$, $\overline{AD}=4$, $\overline{AG}=2$,則 E 到平面 BDG 的距離為

- (A) $\frac{6}{7}$ (B) $\frac{12}{7}$ (C) $\frac{18}{7}$ (D) $\frac{24}{7}$

)3. 已知直線 $L_1 \setminus L_2$ 交於點(1,0,-1),且互相垂直,其中 L_1 : $\begin{cases} x=1+t \\ y=t \\ z=-1 \end{cases}$, $t \in R$, L_2 : $\begin{cases} x=1+s \\ y=-s \\ z=-1-s \end{cases}$

若以 L_1 為軸將 L_2 旋轉一圈後得一平面,則此平面的方程式為何

- (B) y = 0
- (C) x + y 1 = 0 (D) x y z 2 = 0 (E) x + y 3 = 0
-) 4. 下列何者為直線 $\frac{x-2}{1} = \frac{2y-3}{-2} = \frac{1-z}{3}$ 的方向向量?
 - (A) (1,-2,3) (B) (1,-2,-3) (C) (-1,2,3) (D) (1,-1,3) (E) (1,-1,-3)
-) 5. 設兩直線 L_1 : $\frac{x-1}{1} = \frac{y+2}{3} = \frac{z+1}{2}$, L_2 : $\frac{x-3}{1} = \frac{y-1}{4} = \frac{z+2}{3}$, 則兩直線 L_1 與 L_2 之關係為何?
 - (A) 交於一點 (B) 歪斜
- (C) 平行
- (D) 重合 (E) 無法判斷
-) 6. 已知直線 $L: \frac{x-a}{3} = \frac{y+2}{1} = \frac{z-1}{b}$ 與平面 E: 2x + 3y 3z = 5,若直線 L 落在平面 E 上,則 a + b = ?
 - (A) 2
- (C) 5
- (D) 8
- (E) 10
-) 7. 直線 $\begin{cases} x = -1 + t \\ y = 3 + 2t + t$ 为實數,與直線 $\frac{x+1}{1} = \frac{y-3}{-1} = \frac{z+2}{2}$ 交於一點,求兩直線所夾銳角的度數? z = -2 t
 - (A) 15° (B) 30°
- (C) 45°
- $(D) 60^{\circ}$
-)8. 擲一粒公正的骰子兩次,在擲出的點數和為6的條件下,求第二次擲出偶數點的機率?
- $(C)^{\frac{1}{4}}$
- $(D)^{\frac{1}{2}}$
-)9. 某公司的產品分別由甲、乙兩家工廠所生產,其中甲廠占60%,乙廠占40%,而兩家工廠所生產的產品中 分別有5%,3%的瑕疵品,若在該公司的產品中發現一個瑕疵品,則該瑕疵品為甲廠所生產的機率為何?
- (B) $\frac{7}{9}$
- (C) $\frac{5}{7}$ (D) $\frac{3}{5}$ (E) $\frac{3}{4}$
-)10.袋中有5個紅球,7個白球,今由袋中一次取一球,取出後不放回,連取兩次,設每個球被取到的機率都 相等,已知第一次取得白球,求第二次取得紅球的機率?

- (A) $\frac{7}{12}$ (B) $\frac{5}{12}$ (C) $\frac{6}{11}$ (D) $\frac{5}{11}$ (E) $\frac{35}{132}$

二、多選題(每題 5 分,共 30 分,5-3-1-0)

-) 1. 某道數學題目,甲、乙能解出之機率各為 $\frac{1}{2}$ 、 $\frac{1}{3}$,若甲、乙同解此數學問題且互不影響,試選出正確選項。
- (A) 甲、乙兩人均解出之機率 $\frac{1}{6}$ (B) 恰一人解出之機率為 $\frac{1}{2}$ (C) 兩人均解不出之機率為 $\frac{1}{3}$
- (D) 此題被解出之機率為 $\frac{2}{2}$ (E) 只有甲解出的機率為 $\frac{1}{2}$
-) 2. 投擲一枚公正的骰子,A表示出現偶數點的事件,B表示出現奇數點的事件,C表示出現 3 的倍數的事件, D表示出現 1 點或 2 點的事件,試選出正確的選項。
 - (A) A 與 B 是獨立事件
- (B) A 與 C 是獨立事件
- (C) A 與 C 是互斥事件

- (D) C 與 D 是互斥事件
- (E) P(A|D) = P(A)

(1 2	関於 (T) (E) (V	$-211 \pm 27 -$	- 2 .	試選出下確的選頂。

- (A) 向量 (-50,100,-100) 與平面 E 垂直
- (B) 平面 E 和 E_1 : 2x 4y + 4z = 3 平行
- (C) 平面 E 和 E_2 : x + y + z = 0 垂直
- (D) 原點到平面 *E* 的距離為 3
- (E) 平面 E 和 xy 平面所夾的銳角大於 45°
-) 4. 已知直線 L: $\begin{cases} x = 1 + 2t \\ y = 2 + 3t , t \in \mathbb{R}, \text{ 下列哪些點在直線 } L \perp ? \end{cases}$
 - (A) (1,2,3) (B) (2,3,4) (C) (3,5,7) (D) (-1,-1,-1) (E) (-2,-4,-6)
-) 5. 下列何者與 2x + 3y 4z = 1 平行?

(A)
$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-2}{-4}$$
 (B) $\frac{x-3}{-1} = \frac{y+3}{2} = \frac{z+1}{1}$ (C) $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-2}{1}$

(B)
$$\frac{x-3}{-1} = \frac{y+3}{2} = \frac{z+1}{1}$$

(C)
$$\frac{x+1}{1} = \frac{y-2}{2} = \frac{z-2}{1}$$

$$(D) x - 2y - z = 3$$

(D)
$$x - 2y - z = 3$$
 (E) $2x + 3y - 4z = 0$

-) 6. 在空間座標中,選出正確敘述的選項。
 - (A) 3x 2y = 1 的圖形為一直線
- (B) 2x + 3y z = 0 的圖形為一平面

(C)
$$\begin{cases} x - 2y + 3z = 1 \\ 2x - 4y + 6z = -2 \end{cases}$$
 的圖形為一直線

- (C) $\begin{cases} x-2y+3z=1 \\ 2x-4y+6z=-2 \end{cases}$ 的圖形為一直線 (D) $\begin{cases} x=1+t \\ y=3 \\ z=3 \end{cases}$, $t \in R$ 的圖形為一直線
- (E) $\begin{cases} x = 0 \\ y = 0 \end{cases}$ 的圖形為 z 軸
- 三、填充題(每格4分,共40分)
- 第1~3 題,請求出滿足給定條件之平面方程式
- 包含點 P(1,2,3) 和直線 $L: \frac{x-1}{2} = \frac{y-3}{4} = \frac{z+1}{3}$ 的平面方程式為 ______
- 2. 包含兩平行線 L_1 : $\frac{x-1}{2} = \frac{y+2}{-1} = \frac{z-2}{3}$ 和 L_2 : $\frac{x+2}{2} = \frac{y-1}{-1} = \frac{z-1}{3}$ 的平面方程式為
- 3. 包含直線 $L: \frac{x-2}{2} = \frac{y+1}{3} = \frac{z}{1}$ 且與平面 3x 2x + z = 5 垂直的平面方程式為 ______

第 4~6 題,請求出滿足給定條件之直線方程式

通過點 P(1,2,3) 且與直線 $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z+1}{3}$ 平行的直線為 ______。(以對稱比例式表示)

5.	通過點 P(1,2,	,3) 且與平面 2x + 4	y + 3z = 1 垂直的直線為	。(以對稱比例式表示)

6. 通過點
$$P(1,4,3)$$
 且與直線 $\begin{cases} x+y+z=9 \\ 2x+y+2z=5 \end{cases}$ 垂直相交的直線為 ______。(以對稱比例式表示)

8. 在空間座標中,甲、乙兩螞蟻,甲螞蟻沿著直線 $L_1: \frac{x-3}{1} = \frac{y+4}{3} = \frac{z+2}{-1}$ 移動,乙螞蟻在 x 軸上移動,試問:當兩螞蟻距離最近時,乙螞蟻所在位置的坐標為 ________。

9. 甲、乙兩人比賽下棋,比賽規則為 5 戰 3 勝且不得和局,先勝三局可得獎金 5400 元,已知甲單局獲勝機率是乙獲勝機率的 2 倍,且每棋局的比賽結果互不影響,開始比賽進行兩局,且兩局皆由甲獲勝後,突然發生地震而停止比賽,若依繼續比賽兩人贏得比賽的機率之比例來分配獎金,則甲應分得獎金 _________ 元。

10. 甲袋中有編號 1,2,3,4,5的五顆白球,乙袋中有編號 1,2,3的三顆紅球,今從甲袋中任取一球放入乙袋,再從乙袋取出一球,設每顆球被取到的機率都相等,求在已知乙袋取出的球編號為偶數的條件下,此球是白色球的機率為 ______。

中山高中 111 學年度 第二學期 第二次段考 高二數學科 (A 卷)

一、單選題

1.	2.	3.	4.	5.
(A)	(D)	(C)	(E)	(B)
6.	7.	8.	9.	10.
(E)	(D)	(A)	(C)	(D)

二、多選題

少医医				
1.	2.	3.	4.	5.
(A)(B)(C)(D)	(B)(D)(E)	(A)(B)(E)	(A)(C)(D)	(C)(E)
6.				
(B)(D)(E)				

三、填充題

•	県 元起			
	1.	2.	3.	4.
	19x - 8y - 2z = -3	8x + 7y - 3z = -12	5x + y - 13z = 9	$\frac{x-1}{2} = \frac{y-2}{4} = \frac{z-3}{3}$
	5.	6.	7.	8.
	$\frac{x-1}{2} = \frac{y-2}{4} = \frac{z-3}{3}$	$\frac{x-1}{4} = \frac{y-4}{-9} = \frac{z-3}{4}$	19	(4,0,0)
	9.	10.		
	5200	$\frac{2}{7}$		